463 research outputs found

    The Enforcement of Ohio's Litter Control Laws

    Get PDF
    PDF pages: 7

    Proceedings Community Leader's Litter Control Workshop

    Get PDF
    PDF pages: 5

    Leader's Guide to Videotape: "Ohio's School Finance Crisis"

    Get PDF

    Genomic regions associated with kyphosis in swine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A back curvature defect similar to kyphosis in humans has been observed in swine herds. The defect ranges from mild to severe curvature of the thoracic vertebrate in split carcasses and has an estimated heritability of 0.3. The objective of this study was to identify genomic regions that affect this trait.</p> <p>Results</p> <p>Single nucleotide polymorphism (SNP) associations performed with 198 SNPs and microsatellite markers in a Duroc-Landrace-Yorkshire resource population (U.S. Meat Animal Research Center, USMARC resource population) of swine provided regions of association with this trait on 15 chromosomes. Positional candidate genes, especially those involved in human skeletal development pathways, were selected for SNP identification. SNPs in 16 candidate genes were genotyped in an F2 population (n = 371) and the USMARC resource herd (n = 1,257) with kyphosis scores. SNPs in <it>KCNN2 </it>on SSC2, <it>RYR1 </it>and <it>PLOD1 </it>on SSC6 and <it>MYST4 </it>on SSC14 were significantly associated with kyphosis in the resource population of swine (<it>P </it>≤ 0.05). SNPs in <it>CER1 </it>and <it>CDH7 </it>on SSC1, <it>PSMA5 </it>on SSC4, <it>HOXC6 </it>and <it>HOXC8 </it>on SSC5, <it>ADAMTS18 </it>on SSC6 and <it>SOX9 </it>on SSC12 were significantly associated with the kyphosis trait in the F2 population of swine (<it>P </it>≤ 0.05).</p> <p>Conclusions</p> <p>These data suggest that this kyphosis trait may be affected by several loci and that these may differ by population. Carcass value could be improved by effectively removing this undesirable trait from pig populations.</p

    How metal films de-wet substrates - identifying the kinetic pathways and energetic driving forces

    Full text link
    We study how single-crystal chromium films of uniform thickness on W(110) substrates are converted to arrays of three-dimensional (3D) Cr islands during annealing. We use low-energy electron microscopy (LEEM) to directly observe a kinetic pathway that produces trenches that expose the wetting layer. Adjacent film steps move simultaneously uphill and downhill relative to the staircase of atomic steps on the substrate. This step motion thickens the film regions where steps advance. Where film steps retract, the film thins, eventually exposing the stable wetting layer. Since our analysis shows that thick Cr films have a lattice constant close to bulk Cr, we propose that surface and interface stress provide a possible driving force for the observed morphological instability. Atomistic simulations and analytic elastic models show that surface and interface stress can cause a dependence of film energy on thickness that leads to an instability to simultaneous thinning and thickening. We observe that de-wetting is also initiated at bunches of substrate steps in two other systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are converted into patterns of unidirectional stripes as the trenches that expose the wetting layer lengthen along the W[001] direction. Finally, we observe how 3D Cr islands form directly during film growth at elevated temperature. The Cr mesas (wedges) form as Cr film steps advance down the staircase of substrate steps, another example of the critical role that substrate steps play in 3D island formation
    corecore